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A b s t r a c t  

A comparison is made of the treatments of absorption 
in the theories of secondary extinction by Werner [J. 
Appl. Phys. (1974), 45, 3246-3254] and by Becker & 
Coppens [Acta Cryst. (1974), A30, 129-147]. The 
Werner approach treats absorption and extinction 
together, whereas Becker & Coppens assume a prior 
correction for absorption, and make an approximate 
allowance for the effect of absorption on the extinction 
by modifying the parameter representing the effective 
crystal dimension. By consideration of the form of the 
corrections for a specially simple crystal shape, it is 
shown that the Becker & Coppens method predicts 
slightly greater extinction than does the unified treat- 
ment of Werner. However, the difference is small, and 
likely to be unimportant in practice The Werner 
solution of the Hamilton-Zachariasen transfer 
equations is exact, but not easy to use. The Becker & 
Coppens results are approximate, but they are presen- 
ted in a form convenient for computation. 

I n t r o d u c t i o n  

A recent paper by Borie (1982) compares two 
approaches to the solution of the equations describing 
energy interchange between incident and diffracted 
beams - those of Becker & Coppens (1974) and of 
Werner (1974). The general form of solution derived 
was the same. Becker & Coppens (1974) provided 
practical expressions for general use in crystallo- 
graphic investigations. Numerical approximations to 
the solutions for spherical non-absorbing crystals were 
given. Separate corrections for absorption and ex- 
tinction were assumed, with a modified form of 
extinction correction for absorbing crystals. Werner 
(1974) gave the general solution, treating absorption 
and extinction together, in the form of an infinite series, 
with numerical coefficients dependent upon the boun- 
dary conditions at the crystal surface. Attention was 
drawn by Boric (1982) to certain consequences of the 
different treatments of absorption by these authors. The 
purpose of the present paper is to argue that these two 
approaches are closer in practice than was suggested 
by Borie (1982), whc was critical of the approxi- 
mations made by Becker & Cur, pens. 
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It is assumed to be appropriate to use the energy- 
transfer equations 
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where I 0, I are the intensities of the incident and 
scattered beams within the crystal, a,/z are scattering 
and absorption coefficients and x, y indicate coordin- 
ates along the incident and scattered beam directions. 
These are the traditional energy-transfer equations of 
extinction theory, developed by Hamilton (1957) from 
the original treatment of Darwin (1922). Very similar 
equations are used in the well-known and much 
criticized paper by Zachariasen (1967), with the 
variables x and y replaced by path lengths within the 
crystal along the incident and scattered beam direc- 
tions. Following Kato (1980), equations (1) will be 
referred to as the DHZ equations. 

The scattering coefficient ~ is the cross section per 
unit volume of crystal for unit incident intensity. In the 
normal plane-wave treatment, tr = tr(e) is a function of 
e, the angle of misorientation of the incident wave from 
the exact Bragg position. It is assumed that the effective 
value of tr(e) is the same throughout the crystal. The 
physical interpretation of the effective value of the 
parameter tr in an imperfect crystal has been discussed 
by Becker (1977a) and by Kato (1980, and references 
therein). 

Boric (1982) also uses a dimensionless coordinate 
system with length scale (l /g) and u = p.x, v = fly and 
g = a/g. Equations (1) then become 

ei0 
----(1 + g) I o + gl Ou 

(2) 
81 

- - ( 1  + g ) I  + g I  o. 
Ov 

The power of the diffracted beam P(e) was written by 
Zachariasen (1967) and by Becker & Coppens (1974) 
as 

P(e) = JVa~p(a), (3) 
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where a convex sample crystal of volume V is bathed in 
a beam of uniform intensity J. The kinematical 
diffracted power Pk(e) = JVa:  this is the definition of 
the cross section a. The deviation from kinematical 
behaviour is expressed by the extinction correction 
function q~(a). The expression for this correction 
function follows from a transformation of the DHZ 
equations (1) to integral form. [The similarity of 
treatment up to this point may be seen by comparing 
§ II.B of Werner (1974) with Appendix A of Becker & 
Coppens (1974).] 

The extinction factor y deduced from the DHZ 
equations (1), in the absence of absorption, p = 0, was 
given by Zachariasen (1967) and by Becker & 
Coppens (1974) in the form 

y =  f P ( e ) d e / f  Pk(c) dt~ 

= f aq~(a)de/f a de 

1 
= ~ " )" o'(p(o') de, (4) 

where Q is the average cross section per unit volume of 
crystal. The corresponding correction function ~0(a,ct) 
for extinction and absorption may be written, from 
equations (49), (B5), (B6) of Becker & Coppens 
(1974), as 

1 • oo (a 2 tl t~) n 
~0(a,p) = ~ J dV exp [ - ( a  + p)(t I + t;)] Z (n!) 2 

V n = 0  

oo 

= X ~0.(a,u). (5) 
n = 0  

The nth term in the series corresponds to the 
contribution of the (2n + 1)-times Bragg-reflected 
radiation to the diffracted beam. The diffracted power 
is equal to JaVq~(a,/.t). t 1 and t~ are path lengths within 
the crystal, t l from the surface to the volume element 
d V along the incident-beam direction (x or u), and t~ 
from the volume element d V to the surface along the 
diffracted-beam direction (y or v). 

This paper will consider the solution represented by 
(4) and (5) for a specially simple crystal shape. It will 
be shown that the approximate treatment of absorption 
by Becker & Coppens (1974)predicts slightly greater 
extinction than does the unified treatment of Werner 
(1974). However, the difference is small. 

where 

The simple case that was considered by Boric (1982), 
following Zachariasen (1967) and Werner (1974), was 
a crystal whose cross section has edges parallel to the 
directions of incidence and diffraction, as shown in Fig. 
1. The crystal has sides A, B, C along the u, v, w axes 
(a, b, c along x, y, z axes with A = pa and so on), and a 
volume V = A B C  sin 20. The boundary conditions are 

uniform incident intensity Io(O,v ) = J and zero 
diffracted intensity at v = 0, I(u,O) = 0. (It should be 
borne in mind that this rather artificial shape conceals 
the important angle dependence of secondary 
extinction.) 

For this special shape of crystal, the volume 
integration in (5) separates; the result is 

0 9 , , ( g ) = ( ~ + g ) 2 " H , , [ ( l + g )  A] H n [ ( l + g ) B ]  
(1 + g)A  (1 + g ) B  (6) 

in the notation of Borie (1982). The H ,  function was 
introduced by Werner (1974) as notation for a 
normalized incomplete 7 function 7(n,x)" 

x 
7(n + 1, X )  1 

H , ( x )  = - - - -  [" Z"  e x p ( - Z )  dZ 
F(n + 1) n! J 

0 

= 1--exp(- -x)  1 + x +  2! + + 

oo 

= Y er(X), (7/  
r = n +  1 

/ 

x r exp (--x) 
PAx) = (8) 

r! 

is the Poisson distribution with parameter x. 
Comparison of (6) with equation (33) of Werner 

(1974) confirms the identity of his treatment and that of 
Becker & Coppens (1974) for this special case, where 
the DHZ equations can be solved exactly. This 
particular example provides an opportunity for a direct 
comparison of the approaches to absorption, since 

P a r a l l e l e p i p e d  c r y s t a l  

1 A / 

Fig. 1. A crystal cut in the form of a rectangular parallelepiped, 
with edges of lengths A, B parallel to the incident and diffracted 
beams. The third edge, of length C, is normal to the plane of the 
figure. Dimensions are in units of 1//t, where/l is the absorption 
coefficient. Energy transfer between the incident beam 10 and the 
diffracted beam I at the point (u,v) within the crystal is described 
by the DHZ equations (2). 
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there is no additional complication of different methods 
of approximate solution of the DHZ equations. 

Two simplifications will be made in the comparison 
of the approaches to absorption. Firstly, it will be 
assumed that a = a(e) has a constant value across the 
diffracting range, with angular width W, rather than the 
common empirical forms of a Gaussian or a Lorent- 
zian: thus Q = f a d e  = aW. The value of W is 
determined either by domain size (type II extinction) or 
misorientation (type I extinction). The effect of this 
assumption is that the integral (4), for an absorbing 
crystal, takes the form 

oo 
y =  Y ~0,(g). (9a) 

n=0 

Secondly, the crystal will be assumed to be a rhombus 
in cross section, A = B. Then (6) becomes 

t g 1 2 " ( ~  2 
~o,,(g) = ~-i"-~+ g / (9b) 

with x = (1 + g)A. In the absence of absorption, 
g/(1 + g) = a / ( a  + a) = 1, so the first term in (9b) is 
equal to unity, and x = gA. 

The two restrictions are made to simplify the 
analysis. If they are relaxed, the general conclusions are 
unaltered. To introduce the comparison of the method 
of Werner with that of Becker & Coppens, the 
behaviour of the solution represented by (9) will be 
discussed, initially for a non-absorbing crystal. 

Properties of extinction expression (9) 

must be less than unity, as is required for an extinction 
function. The kinematical result y(0) = 1 is obtained 
since 

X~0 

The rate of convergence of the series (11) with n 
follows from the definition (7). As r increases, the 
Poissonian distribution Pr(X) tends to a Gaussian with 
mean and variance equal to x. Thus for n > x, the 
terms in the series (7) for H,(x) are falling off rapidly 
with n. This is indicated in Fig. 2, which shows the 
variation of the partial sum 

nmaxz ( ~ _ _ ) )  2, 

n=0 
with nma x for x = 4, 8, 12. It is clear from Fig. 2 that the 
terms in (11) with n > x + 1, say, contribute little to the 
final answer. 

Differentiating (1 l) with respect to x gives the result 

d y =  ~ 2H,,(x)[xP,,(x)-H.(x)] 

dx x 3 ' n=0 
which may be rearranged to give 

dy _ ~-~°° 2P,,(x) n,,+ ~(x) . (12) 
dx ~ x 2 n=0 

This expression is a sum of negative terms, hence 
dy/dx is always negative, and y(x) is a monotone 

The series (9a) is a sum of diminishing terms since, 
from (7), 

n,+ l(X) = n , ( x )  -- P,+ ,(x). 

The series is convergent for all finite x; from the 
integral definition of Hn(x) in (7) it may be seen that 

oo 
Z H,,(x)= x 

n=0 
o r  

= 1. (10) 
n=0 

All of these H,(x) are positive [again from (7) - for 
example, the definition as an integral contains an 
integrand which is always positive], thus all of the 
terms in (10) must be less than unity. Hence the sum of 
the squares of these terms 

y =  (11) 
n=0 

2 . 8 8  
E-I 

I .  5g 

I . g g  

IB. 5g 

x=4 

x=8 12 

I~ .  ~1~ i i | i i 

0 . 0 0  0 . 5 ~  I . 0 0  . 5 0  
E! nmax 

n 2 Fig. 2. Variation of  the partial sum ~.=='~o[H.(x)/x] with n . . . .  
where H,(x) is defined by (7) and calculations have been made 
for x = 4, 8, 12. The sum has been evaluated for nma x from 0 to 15: the individual values are joined by straight-line segments. 
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decreasing function of x; this is again what would be 
expected of an extinction function. 

If the restriction to absorption-free crystals is 
relaxed, then the convergence of (9) will be more rapid, 
since the weighting factor [g/(1 + g)]2n applied to the 
nth term in the series is less than (equal to) unity for 
n > 0 (n = 0). The restriction to a crystal with A -- B is 
for simplicity in the expressions given in this section. 
The general conclusions would be unaltered for a 
parallelogram, with convergence at a rate intermediate 
between that for a rhombus of side A and one of side B. 

For small values of x, the (n = 0) term dominates in 
(9) for the extinction correction. For example, the 
contribution made by the (n = 1) terms is less than 1% 
for x < 0.2 and less than 5% for x < 0.49. In the 
following comparison of the different treatments of 
absorption, it will be assumed that the n = 0 term 
(single Bragg reflection) is the only significant one. This 
is done to simplify the analysis. At the end of this 
section of the paper it will be argued that the 
conclusions are valid for the full series (9). 

The n = 0 expression has, from (7) and (9), the 
simple form 

tp0(g) = L[(1 + g)AIL[(1 + g)B], 

where the L function is defined to be 

(13) 

Ho(x ) 1 - -  exp(--x) 
L(x) - - - - - -  . (14) 

X X 

Method of Werner (1974) 

Using the notation y(g) for (4) with tp(e) replaced by 
~0(a,#), with the above approximations, we have 

y ( g ) = L [ ( 1  + g)A]L[(1 + g)B] 

{ 1 - -  exp[--(1 + g) A ]}{ 1 - exp[--(1 + g) B] } 

(1 + g)2AB 

(15) 

This expression includes attenuation due both to 
absorption and to extinction: it is the first term in the 
series called the 'AB-extinction' formulation by Werner 
(1974). 

The attenuation produced by absorption alone is the 
transmission factor, denoted here by M since A is being 
used for a crystal dimension. In the notation of (5), 

M = ~00(0,#) = --~ exp[-#(q + t~)] d V =  L(A) L(B). 
V 

(16) 

In order to make a comparison with the method of 
Becker & Coppens (1974), it is helpful to consider the 

attenuation produced by extinction alone; from (15) 
and (16) this is 

y(g) [ L[(1 + g)a] 

Y w -  -~ = I L(A) 
L[(1 + g)B]} 

L ( - B )  " = Y ~ v Y ~ v .  

(17) 

It is sufficient, here and below, to consider the 
extinction functions dependent upon the dimension A 
along the incident beam direction. The series expansion 
of the function in (17), for extinction only, is 

L[(1 + g)A] 
yaw = 

L(A) 

gA (g + 2g2)A2 (g2 + g3)A3 
= 1 - - ~ +  - -  + .... 

2 12 24 

(18) 

Method of Becker & Coppens (1974) 

The integral (4) for extinction alone is evaluated. It is 
assumed that corrections for absorption have already 
been applied. The extinction correction will be depen- 
dent upon the mean path lengths through the crystal for 
the incident and diffracted beams. Allowance for 
absorption, which from (5) is actually entirely corre- 
lated with extinction effects, is made by replacing the 
path lengths by absorption-weighted path lengths. 

For the crystal being considered, the expression for 
extinction in the absence of absorption is, from (4) and 
(6), 

[ 1 - -  exp(--gA)] [ 1 -- exp (--gB)] 
YBc = ABg 2 

= Z(gA) Z(gB) (19) 

and the function L(gA) has the series expansion 

gA g2A2 g3A3 
L(gA) = 1 - - -  + - -  + .... (20) 

2 6 24 

Expression (19) may be obtained directly from (17) 
by taking the limit of (17) as the absorption coefficient 
# goes to zero. This follows because the arguments of 
the L functions in (18) are (1 + g)A = (# + a)a and 
A = pa, which become aa and 1 as # goes to zero. It is 
convenient to write aa as gA even for the limit of 
negligible absorption. The results (18) and (20) look 
more like normal secondary-extinction expressions on 
recalling gA = ea = Qa/W; the extinction depends 
upon Q for the reflection, the crystal dimension and the 
reflection width. 

An improved approximation to (18) may be obtained 
with an expression in which the parameter representing 
the effective crystal dimension is modified to make 
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allowance for absorption. The simplest absorption- 
weighted mean path length is 

v 

From (16), 

i = _ _  

(t, + t~)exp[-/l(t, + t~)l dV 

/s x exp[-~(t,  + t;)l dV 

v 

1 dM 1 dL(A) 1 

M dlu L(A)  dlu L(B)  

which gives, in dimensionless units, 

T =  a-t = T(A) + T(B), 

where 

A A 2 
T(A) = 1 - A/[exp(a)  - 11 - + 

2 12 

(21) 

dL(B) 

d/~ 

a 4 
. -[-  . . . .  

720 

(22) 

The function T(A) is the absorption-weighted mean 
path length for the incident beam [and similarly T(B) 
for the diffracted beam]. For small absorption, A ,~ 1, 
and T(A) ,~ A/2: it is to be expected that the mean path 
length should be half the crystal dimension in the 
direction of the incident beam. Expression (19) 
describes extinction when absorption is negligible. We 
may allow for absorption in (19) by replacing A by 
2T(A) and B by 2T(B). The series expansion for the 
function 

L[2gT(A)] = {1 -- exp[--2gT(A)]}/2gT(A) 

gA (g + 2g2)A 2 

- - +  .... (23) 

is, from (19) and (22), 

L[2gT(A)] = 1 
2 12 

g2A3 g3A3 

18 24 

Argument o f  Borie (1982) 

crystal is obtained by integrating I(u,B) across the 
surface of the crystal v = B, giving 

A 

C sin 20 f I(u,B) du = JVgL(A)  L(B).  (25) Pk 
o 

The angular factor appears because the diffracted 
beam is not emerging normal to the crystal face. Boric 
(1982) also gives the exact solution of Werner (1974), 
which involves an infinite sum over modified Bessel 
functions of the first kind, 7p(z) of integer order p with 
argument z = 2e(xy) 1/2 = 2g(uv) v2. For small z, these 
Bessel functions may be replaced by (z/2)P/pI, which is 
the first term in their series expansion 

J"p(z) = (z/2)%V~[p + 1; (z/2)2]/pI (26) 

(Sneddon, 1961). This approximation assumes that 
only the singly Bragg-reflected radiation contributes to 
the diffracted beam - it is equivalent to taking just the 
n = 0 term in (5). And successive terms in the 
expansion of the hypergeometric series in (26) repre- 
sent the (2n + 1)-times-Bragg-reflected beams. How- 
ever, there is no simple physical interpretation of the 
order p of the Bessel function. The coefficients 
multiplying these Bessel functions are determined by 
the boundary conditions for the incident and diffracted 
beams at the surface of the crystal (see Werner, 1974; 
Becker, 1977b, 1983). 

The resulting approximate form given by Boric 
(1982) is 

I ( u , v ) = J  g { 1 -  exp[-(1 + g)v]} 
l + g  

× exp[-(1 + g)u]. (27) 

The corresponding diffracted power is 

P = J V g L [ ( 1  + g)A]L[(1 + g)Bl .  (28) 

The ratio of (28) and (25) gives an expression for 
extinction alone which is in agreement with (17). 
Expression (19) for extinction in the absence of 
absorption may be obtained from (28) and (25) as 
previously, in the limit as ~ goes to zero. 

It will be shown that the expressions given by Boric 
(1982) for the intensities within the crystal may be 
developed to give (17) and (19). For the unified 
treatment of extinction and absorption, the intensity 
I(u,v) of the diffracted beam in the kinematical limit is 

Comparison of  methods 

The result (18) from the Werner (1974) method will 
be compared with the Becker & Coppens (1974) ex- 
pressions (20) and (23). From the series expansions we 

I(u,v) = Jg[1 - exp(-v)] exp(-u), (24) have 

where [1 - exp(-v)] represents the build up of a 
diffracted beam in the v direction, and exp(-u) 
represents the effect on the diffracted beam of the 
attenuation of the incident beam by absorption. 

The kinematical diffracted power Pk for an absorbing 

gA 2 g2 A3 
YA w -  L ( g A ) - - -  + ... (29) 

12 24 

g2A3 
Y~v- L[2gT(A)] - + .... (30) 

72 
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These expressions suggest that use of the absorption- 
weighted path length T(A) does indeed give an 
improved approximation to the unified result of Werner 
(1974), and that the Becker & Coppens (1974) 
treatment predicts greater extinction for a given value 
of g. This behaviour is confirmed by the calculations of 
Fig. 3, which shows the variation of (18), (20) and (23) 
with scaled cross section g for selected values of the 
crystal dimension A. All three expressions give the 
kinematical value of unity for g = 0. The limiting 
gradients at g = 0 of the curves shown in Fig. 3 have 
the same value o f - -T (A)  for the Werner expression 
(18) and for the improved Becker & Coppens ex- 
pression (23), and a value o f - A / 2  for the original 
Becker & Coppens expression (20). Since T(A) < A/2 
for all A > 0, the uncorrected expression (20) will have 
a steeper initial gradient, as shown in Fig. 3. As g 
increases, both of the Becker & Coppens curves lie 
below the corresponding Werner curve, but the 
absorption-weighted expression (23) is much closer, 
especially for smaller values of A; equation (30) shows 
that this difference depends upon A 3. 

These comparisons have included only the n = 0 
term in (9). Similar conclusions, on the accuracy of the 
Becker & Coppens approach, may be obtained by 
inspection of the higher terms. For example, the 
expression corresponding, for n = 1, to the n = 0 
Werner extinction function yA w, equation (18), is, from 
(6) and (17), 

(1-~g)~)/L(A), (31) 

1 . 0 0  

0.80 

0.60 

0.40 

0.20 

, . , , . , ° 

\ \ ' ' ,  -~ 

\ \  . ,  

0.00 
0.00 0.50 1 .00 1 .50 2.00 

IA =0.5 

!A=I 

A=2 

O 

Fig. 3. Variation of the extinction functions with scaled cross 
section g = a//u for crystal dimensions A = 0.5, 1.0, 2.0. The 
curves shown are the Werner function Y~v, equation (18) (solid 
lines), the Becker & Coppens function L(gA), equation (20) 
(dashed lines), and the Becker & Coppens function with 
absorption-weighted path lengths L[2gT(A)], equation (23) 
(dotted lines). For small g, the solid and dotted lines almost 
coincide. 

where x = (1 + g)A. The series expansion of (31) is 

[ (l + 4g)A (2 + 3g)g A2 ] gA 1 - + + . . . .  (32) 
2 6 12 

The uncorrected Becker & Coppens expression corre- 
sponding to (31) is Hl(X)/X with x = gA; this has series 
expansion 

[ 2gA gEA2 ] gA 1 - ~ + ~ +  . . . .  (33) 
2 3 4 

Allowance for an absorption-weighted path length 
T(A), given by (22), may be made as before by taking 
x = 2gT(A). The resulting corrected form of (33) is 

gA [1 (I + 4g)A (8 + 9g)gA2 ] 
+ + . . . .  (34) 

2 6 36 

So equations (32), (33), (34) for n = 1 correspond to 
(18), (20), (23) respectively for n = 0. Just as for the 
n = 0 case, the Becker & Coppens result (34) with an 
absorption-weighted path length is a close approxi- 
mation to the Werner expression (32). 

The accuracy of the Becker & Coppens approxi- 
mation to the overall extinction factor y, (9), is 
indicated by the calculations, shown in Fig. 4, of the 
variation of y with scaled cross section g for a crystal 
with A = B = 2.0. Terms in (9) with n up to 5 were 
included, i.e. contributions from 1-, 3-, .... l 1-times 

I . 0 0  

0.80 

0 . 6 0  

Y 

0.40 

0.20 

\ . 

\ \  " .  

. . %  - . 

. - . . . . .  
- . . . . . .  

. . . . . . . .  
. . . . . . .  

8.80 . . . . . . .  
0.00 0.58 ! . 00 I . 50 2.00 

g 

Fig. 4. Variat ion of  the extinction factor y with scaled cross section 
g = o//~ for a crystal with dimensions A = B = 2-0. The curves 
shown are the Werner expression (9) for extinction and 
absorption, with x = (1 + g)A, divided by the absorption 
expression (16) (solid fine), the Becker & Coppens expression (9) 
for extinction, with x = gA (dashed line), and the Becker & 
Coppens expression (9) for extinction with absorption-weighted 
path lengths, x = 2gT(A) (dotted line). For small g, the solid and 
dotted lines almost coincide. Terms in the sum (9) were included 
up to n = 5, contr ibut ions for n > 5 were negligible (less than 
o-oo]). 
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Bragg-reflected radiation. As in Fig. 3, the solid line 
indicates the Werner solution and the dashed (dotted) 
lines indicate the uncorrected (absorption-weighted) 
Becker & Coppens results. 

Discussion 

It has been argued that, for the simple crystal shape 
considered in the previous section, the approximate 
treatment of absorption by Becker & Coppens (1974) 
predicts greater extinction than does the exact solution 
of Werner (1974), but only slightly greater. This result 
is likely to be true for other crystal shapes also, since 
absorption will always act to reduce the effective 
crystal dimension for secondary extinction. 

A number of criticisms of the Zachariasen (1967) 
and Becker & Coppens (1974) approaches have been 
made by Borie (1982). How may these be reconciled 
with the present conclusions? 

(i) In describing the Zachariasen treatment, Borie 
(1982) quotes the equation 

I = I '  exp[-(u + v)] (35) 

relating the diffracted intensities I and I '  for absorbing 
and for non-absorbing crystals respectively, with a 
similar equation for the incident beam. It is then 
pointed out that these equations fail in general, as is 
clear on comparing (27) for I (u ,v )  with its limit 

I '  (u,v)  = J exp (-gu)[ 1 - exp (-gv)l  (36) 

as/~ goes to zero. However, the result (36) is nowhere 
used by Becker & Coppens (1974), who develop their 
treatment of absorbing crystals from a general result, 
given in the present paper as (5), which for the special 
parallelepiped crystal of the previous section leads to 
the same exact expression as that given by Werner 
(1974). 

(ii) Approximations are made by Becker & Coppens 
(1974) in their solution of the DHZ equations for a 
spherical crystal. But the Werner (1974) solution, 
though exact, is not easy to use. This is not so much due 
to the presence of an infinite series of modified Bessel 
functions (26) as to the difficulty of determining the 
coefficients multiplying these Bessel functions for each 
reflection. The successive approximations of Becker & 
Coppens (1974) are directed towards obtaining ex- 
pressions for extinction-containing parameters which 
may be estimated in a least-squares refinement, with 
path-length information provided by a prior absorption 
correction. 

(iii) Both Werner (1974) and Borie (1982) criticize 
the factoring out of a separate absorption correction, 
and state that it is only valid when It >> a, i.e. when 
g ,~ 1. From (29) and (30) this is correct, but the limit is 
the kinematic value, which is unhelpful. The cal- 

culations of Figs. 3 and 4 are intended to show that in 
practice this approximate factoring out works well. 

A numerical example may be given. The crystal will 
be assumed to be a rhombus in cross section, with the 
same dimensions as for Fig. 4. Thus A = B = 2.0; 
extinction is most severe when g = 2.0, the largest 
value used. The values obtained for the sum (9) are 
0.251, 0.180 and 0.243, for the Werner, uncorrected 
Becker & Coppens and absorption-weighted Becker & 
Coppens expressions respectively. For somewhat less 
severe extinction, g -- 1.0, the corresponding values are 
0.405, 0.307, 0.395. It is clear that the Becker & 
Coppens approach is working well here. The small 
difference between the solid and dotted curves of Fig. 4 
is likely to be accommodated in practice by slight 
adjustment of the extinction parameter determined by a 
least-squares fitting procedure. 

For investigations of crystal structures, where the 
objective is to make a reliable correction for extinction, 
Becker & Coppens (1974) provide convenient em- 
pirical expressions. That their correction works well 
has been shown by a number of experimental 
investigations, for example that of Hutton, Nelmes & 
Scheel (1981) on SrTiO a, where it was possible to 
correct for severe extinction (more than half the 
reflections had y ( 0.7; about 10% of the reflections 
had y < 0.2), and then obtain thermal parameters in 
good agreement with values obtained independently by 
lattice-dynamical calculations. The circumstances in 
which it is appropriate to use the Becker & Coppens 
(1974) or similar corrections have been reviewed by 
Becker (1977a). The other conditions which should be 
satisfied - for example that the domain dimension is not 
larger than the extinction distance, that the effective 
cross section is uniform throughout the crystal, and 
that the extinction is correctly characterized as type I 
or type II - are likely to be a more severe limitation on 
the accuracy of an extinction correction than is the 
treatment of absorption. 

I should like to thank Dr S. P. Blythe and Dr R. J. 
Nelmes for helpful discussions, and the referees for 
their careful comments. 
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